

Tensorflow & Keras:

Open source
Deep Learning

Board games (Go, Chess)

Super-human performance

Object recognition / autonomous driving

Roughly human performance

Speech recognition & machine translation

Remarkable progress, but still below human performance

Deep Learning successes:

Artificial Intelligence, Machine Learning & Deep Learning

Deep
Learning

Machine
Learning

Artificial
Intelligence

Classical Programming versus Machine Learning

Classical Programming
Rules

Data
Answers

Machine Learning
Data

Answers
Rules

Artificial neurons: Building blocks for Deep Learning

y=ϕ((∑n xn⋅wn)+b)

w1

w2

w3

y

x1

x2

x3

bias

ϕ
Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Dense feed forward networks

Feedforward networks: No cycles, data 'flows' from input layer to output layer

Dense networks: Each neuron is connected to each neuron of the next layer

Training a feed forward network - Supervised learning

Loss

True value Y

Prediction Y‘
Training
sample X

Optimizer

Adjust weights

Repeat until
predictions are
satisfactory...

Predicting from a trained feed forward network (‚Inference‘)

Prediction Y
New input X

Production network with trained weights & biases

A well-trained network can generalize new input!

Learned knowledge is contained in the weights

Neural Networks: Common architectures

Dense Feedforward networks
● General purpose for classification / regression
● All neurons connected between layers
● Data as tensors flows from left to right

Convolutional networks
● Convolution operation on local features
● Funnel architecture

-> increasing abstract concepts in deeper layers
● Object recognition; autonomous driving

Recurrent networks
● Feedback loops -> Remembers past data
● Time series analysis; translation; speech recognition
● LSTM Long-Short Term Memory

GRU Gated Recurrent Unit

Learning methods

Supervised learning

Minimize errorInput
Output

Reinforcement learning

Maximize reward

Reward

Input
Output

Unsupervised learning

Find structures
Input Output

Target

Neural Networks: Unsupervised / Generative architectures

Autoencoder
● Trained with Input = Output
● Hourglass architecture

-> compressed 'essence' at bottleneck layer
● DAE Denoising Autoencoder

VAE Variational Autoencoder

Generative adversarial networks
● 2 combined networks

(Generator / Discriminator)
● Both work against each other & learn

simultaneously
● Generates photorealistic pictures

Neural Turing Machines
● Network connected to Turing memory bank
● Can generate algorithms by itself
● Highly experimental / academic

(so far simple copy / sort algorithms)

Convolutional Networks

Convolutional Base Classifier

Cat: 99,2%
Dog: 0,8%

Convolution as image filters

1 1

0 0

1

0

-1 -1 -1

0 1

1 -5

0

1

0 1 0

Convolutional
Kernels

Input map

Feature maps

Basic idea of a convnet

"Cat"

A convnet learns a spatial hierarchy of translation-invariant features:

● Hyperlocal simple geometrical patterns in entry layers
● Local objects in middle layers
● Global high-level abstract concepts in deeper layers

Current convnet performance (ILSVRC competition)

Team Name Year Top-5 error

SuperVision (University of Toronto) 2012 15.3%

Clarifai Corp. (USA) 2013 11.2%

GoogLeNet 2014 6.7%

MRSA (China) 2015 3.6%

Trimps-Soushen (Ministry of Public Security China) 2016 3.0%

WMW (Momenta Beijing & University Oxford) 2017 2.3%

Reference: Human expert(*) 5.1%

Pre-2012 Non-convolutional algorithms > 25%

(*): Methodology at:
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Source: https://research.googleblog.com/2016/08/improving-inception-and-image.html

Google web search for Deep Learning frameworks

Source: "Deep Learning with Python", Francois Chollet, P. 61

● A numerical computation library for
dataflow graphs (‚tensor-flow‘)

● Can run on CPU and GPU
● Main application: Neural network

machine learning
● Open Source since 5.11.2015

(Apache 2.0 license)

Official documentation: https://www.tensorflow.org

Google Research Blog: https://research.googleblog.com/

Sources & Resources: https://github.com/tensorflow

The Tensorflow library

● A high-level neural networks API
● Written in Python
● Capable of running on top of

TensorFlow, CNTK, or Theano.

Official documentation: https://keras.io/

Sources & example code: https://github.com/keras-team/keras

Keras Blog: https://blog.keras.io/

Keras Resources: https://github.com/fchollet/keras-resources

Keras

TensorFlow / Theano / CNTK

CUDA / cuDNN BLAS

GPU CPU

The Keras Neural Network Library

General requirements:
● Python 2.7 or 3.4+
● Python pip packet manager
● Recommended: h5py (save/load networks), matplotlib (image visualization)

Requirements for GPU version:
● Nvidia graphics card, compute capability >= 3.0
● Nvidia CUDA Toolkit & drivers 8.0 (Closed Source!)
● Nvidia CuDNN 6.0 library (requires registration at Nvidia)

Tensorflow openCL support ‚work in progress‘ since 2016

Installation

> pip install tensorflow keras # CPU-only version

> pip install tensorflow-gpu keras # GPU version

Strongly recommended: System-specific compilation from tensorflow sources

Tedious, but worth it (CPU: SSE/AVX extensions; GPU: Nvidia compute capability)

https://www.tensorflow.org/install/install_sources

playground.tensorflow.org

Keras: Provided datasets for learning / experimentation

Dataset
Number of entries

(Train / Test)
Result type

CIFAR 10
(Color images of various items, 32x32) 50000 / 10000 10 classes

CIFAR 100
(Color images of various items, 32x32) 50000 / 10000 100 classes

IMDB Movie Reviews
(Preprocessed texts)

25000
Binary

(good / bad)

Reuters Newswire
(Preprocessed texts)

11228 46 topics

MNIST Handwritten digits
(Grayscale images 28x28)

60000 / 10000
10 classes

(number 0-9)

MNIST Fashion icons
(Grayscale images 28x28) 60000 / 10000

10 classes
(clothing type)

Boston House Prices
(13 location attributes)

506
Regression

(House prices)

Keras: Provided pre-trained networks

Network
(trained on ILSVRC 1000 image

classes)
Size / Parameters

Top-5
classification

error

VGG16 528 MB / 138 M 9.9 %

VGG19 549 MB / 143 M 9.0 %

ResNet50 99 MB / 25 M 7.1 %

InceptionV3 92 MB / 23 M 5.6 %

Xception 88 MB / 22 M 5.5 %

InceptionResNetV2 215 MB / 55 M 4.7 %

MobileNet 17 MB / 4 M 12.9 %

DenseNet (Keras 2.1.3) 81 MB / 20 M 6.7 %

NASNet (Keras 2.1.3) 24 MB / 5 M
344 MB / 88 M

8.4 %
3.8 %

MobileNet
alpha = 0.75

Size = 160x160 F
ea

tu
re

s

2x
16

 D
en

se Binary Classifier

0.0 = 'Cat'
1.0 = 'Dog'

1) Extract image features with pre-trained convbase

2) Use features to train the classifier

3) Build production network with convbase & final classifier

Live-Demo "Dogs versus Cats". Workflow "Feature Extraction"

Training Dataset

Overfitting – Biggest problem of neural networks

Generalizing network

Overfitting network

„Bigger is better“ doesn't apply to
neural networks!

Over-complex networks just memorize
and fail to generalize.

Common rookie mistake: Build a huge
network and train it for too long.

100% accuracy on training data is
irrelevant.

Hold-out validation

Training set

Training set Test set

Validation set

Network optimization phase

Final training for production network

Score

Underfitting - Overfitting

Model complexity (Training epochs, network size, number of layers ...)

Underfitting Overfitting

Training loss

Validation loss

'Sweet spot'

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

