
  

Tensorflow & Keras:

Open source
Deep Learning



  

Board games (Go, Chess)

Super-human performance

Object recognition / autonomous driving

Roughly human performance

Speech recognition & machine translation

Remarkable progress, but still below human performance

Deep Learning successes:



  

Artificial Intelligence, Machine Learning & Deep Learning

Deep 
Learning

Machine 
Learning

Artificial 
Intelligence



  

Classical Programming versus Machine Learning

Classical Programming
Rules

Data
Answers

Machine Learning
Data

Answers
Rules



  

Artificial neurons: Building blocks for Deep Learning
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Dense feed forward networks

Feedforward networks: No cycles, data 'flows' from input layer to output layer

Dense networks: Each neuron is connected to each neuron of the next layer



  

Training a feed forward network - Supervised learning

Loss

True value Y

Prediction Y‘
Training 
sample X

Optimizer

Adjust weights

Repeat until 
predictions are 
satisfactory...



  

Predicting from a trained feed forward network (‚Inference‘)

Prediction Y
New input X

Production network with trained weights & biases

A well-trained network can generalize new input!

Learned knowledge is contained in the weights



  

Neural Networks: Common architectures

Dense Feedforward networks
● General purpose for classification / regression
● All neurons connected between layers
● Data as tensors flows from left to right

Convolutional networks
● Convolution operation on local features
● Funnel architecture 

-> increasing abstract concepts in deeper layers
● Object recognition; autonomous driving

Recurrent networks
● Feedback loops -> Remembers past data 
● Time series analysis; translation; speech recognition
● LSTM Long-Short Term Memory  

GRU Gated Recurrent Unit



  

Learning methods

Supervised learning

Minimize errorInput
Output

Reinforcement learning

Maximize reward

Reward

Input
Output

Unsupervised learning

Find structures
Input Output

Target



  

Neural Networks: Unsupervised / Generative architectures

Autoencoder
● Trained with Input = Output
● Hourglass architecture 

-> compressed 'essence' at bottleneck layer
● DAE Denoising Autoencoder

VAE Variational Autoencoder

Generative adversarial networks
● 2 combined networks 

(Generator /  Discriminator) 
● Both work against each other & learn 

simultaneously
● Generates photorealistic pictures

Neural Turing Machines
● Network connected to Turing memory bank 
● Can generate algorithms by itself
● Highly experimental / academic 

(so far simple copy / sort algorithms)



  

Convolutional Networks

Convolutional Base Classifier

Cat:  99,2%
Dog:  0,8%



  

Convolution as image filters
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Basic idea of a convnet

"Cat"

A convnet learns a spatial hierarchy of translation-invariant features:

● Hyperlocal simple geometrical patterns in entry layers
● Local objects in middle layers
● Global high-level abstract concepts in deeper layers



  

Current convnet performance (ILSVRC competition)

Team Name Year Top-5 error

SuperVision (University of Toronto) 2012 15.3%

Clarifai Corp. (USA) 2013 11.2%

GoogLeNet 2014 6.7%

MRSA (China) 2015 3.6%

Trimps-Soushen (Ministry of Public Security China) 2016 3.0%

WMW (Momenta Beijing & University Oxford) 2017 2.3%

Reference: Human expert(*) 5.1%

Pre-2012 Non-convolutional algorithms > 25%

(*): Methodology at:
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/



  

Source: https://research.googleblog.com/2016/08/improving-inception-and-image.html



  

Google web search for Deep Learning frameworks

Source: "Deep Learning with Python", Francois Chollet, P. 61



  

● A numerical computation library for 
dataflow graphs (‚tensor-flow‘)

● Can run on CPU and GPU
● Main application: Neural network 

machine learning
● Open Source since 5.11.2015 

(Apache 2.0 license)

Official documentation: https://www.tensorflow.org

Google Research Blog: https://research.googleblog.com/

Sources & Resources: https://github.com/tensorflow

The Tensorflow library



  

● A high-level neural networks API
● Written in Python
● Capable of running on top of 

TensorFlow, CNTK, or Theano. 

Official documentation: https://keras.io/

Sources & example code: https://github.com/keras-team/keras

Keras Blog: https://blog.keras.io/

Keras Resources: https://github.com/fchollet/keras-resources

Keras

TensorFlow / Theano / CNTK

CUDA / cuDNN BLAS

GPU CPU

The Keras Neural Network Library



  

General requirements: 
● Python 2.7 or 3.4+
● Python pip packet manager
● Recommended: h5py (save/load networks), matplotlib (image visualization) 

Requirements for GPU version:
● Nvidia graphics card, compute capability >= 3.0
● Nvidia CUDA Toolkit & drivers 8.0 (Closed Source!)
● Nvidia CuDNN 6.0 library (requires registration at Nvidia)

Tensorflow openCL support ‚work in progress‘ since 2016

Installation

> pip install tensorflow keras # CPU-only version

> pip install tensorflow-gpu keras # GPU version

Strongly recommended: System-specific compilation from tensorflow sources

Tedious, but worth it (CPU: SSE/AVX extensions; GPU: Nvidia compute capability) 

https://www.tensorflow.org/install/install_sources



  

playground.tensorflow.org



  

Keras: Provided datasets for learning / experimentation

Dataset
Number of entries

(Train / Test)
Result type

CIFAR 10 
(Color images of various items, 32x32) 50000 / 10000 10 classes

CIFAR 100 
(Color images of various items, 32x32) 50000 / 10000 100 classes

IMDB Movie Reviews
(Preprocessed texts)

25000
Binary

(good / bad)

Reuters Newswire
(Preprocessed texts)

11228 46 topics

MNIST Handwritten digits
(Grayscale images 28x28)

60000 / 10000
10 classes 

(number 0-9)

MNIST Fashion icons
(Grayscale images 28x28) 60000 / 10000

10 classes
(clothing type)

Boston House Prices
(13 location attributes)

506
Regression

(House prices)



  

Keras: Provided pre-trained networks

Network
(trained on ILSVRC 1000 image 

classes)
Size / Parameters

Top-5 
classification 

error

VGG16 528 MB / 138 M 9.9 %

VGG19 549 MB / 143 M 9.0 %

ResNet50 99 MB / 25 M 7.1 %

InceptionV3 92 MB / 23 M 5.6 %

Xception 88 MB / 22 M 5.5 %

InceptionResNetV2 215 MB / 55 M 4.7 %

MobileNet 17 MB / 4 M 12.9 %

DenseNet (Keras 2.1.3) 81 MB / 20 M 6.7 %

NASNet (Keras 2.1.3) 24 MB / 5 M
344 MB / 88 M

8.4 %
3.8 %



  

MobileNet
alpha = 0.75

Size = 160x160 F
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se Binary Classifier

0.0 = 'Cat'
1.0 = 'Dog'

1) Extract image features with pre-trained convbase

2) Use features to train the classifier

3) Build production network with convbase & final classifier

Live-Demo "Dogs versus Cats". Workflow "Feature Extraction"

Training Dataset



  

Overfitting – Biggest problem of neural networks

Generalizing network

Overfitting network

„Bigger is better“ doesn't apply to 
neural networks!

Over-complex networks just memorize 
and fail to generalize.

Common rookie mistake: Build a huge 
network and train it for too long.

100% accuracy on training data is 
irrelevant.



  

Hold-out validation

Training set

Training set Test set

Validation set

Network optimization phase

Final training for production network

Score



  

Underfitting - Overfitting 

Model complexity (Training epochs, network size, number of layers ...)

Underfitting Overfitting

Training loss

Validation loss

'Sweet spot'
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