
ll

Rust
The programming language and its ecosystem

Dr. Christoph Zimmermann

22. 10. 2019

 2

cat /etc/motd

● Introduction
● Rust – the language
● Packages & cargo
● Tool chain support
● Case study
● Outlook

 3

info rust

● Main philosophy:

compile
time

run
time

 4

info rust (ctd.)

● Mozilla Research, 7/7/10
● High performance, memory-safe

concurrent language
● Compiler-based with strong static type

system
● Comprehensive module ecosystem

powered by standard package manager
● Focus on standardization

 5

man rustc (ctd.)

● Memory management:
● No GC
● Optimized for speed

● Rules:
● Each variable has an owner
● Only one owner at any time
● Owner leaves scope => value dropped

=> References / borrowing / lifetimes

 6

man rustc (ctd.)

● Rust: not a real OOPL
● Main abstractions:

● Enums: more powerful than in C/C++
● Structs: abstract data types
● Generics: instantiated types similar to Java /

C++ templates
● Traits: comparable to mix-ins in OOPLs

=> Foundation for strong type checking at
compile time

 7

man rustc (ctd.)

● Packaging:
● Modules: structs / enums / impl(mentations) =>

principal namespaces
● Crates: collection of modules, comparable to

packages
● crates.io: the Rust community crate registry

● Before reinventing the wheel, check crates.io
● cargo: comprehensive package / build

management system

 8

man rustc (ctd.)

● Other language features:
● Closures: anonymous functions (eg.

lambdas)
● Macros (strongly typed, also used for AST

handling)
● Various multiprocessing / threading models

already supported by standard library
● Comprehensive standard library (similar to

Python)

 9

webserver &

 10

rustc -v

● Toolchain support:
● IDEs: VS code, Intellij IDEA, Eclipse (full RLS

support)
● Standard compiler: per-user tool chain, OS

packages
● Debugging: gdb, lldb
● Platforms: Linux, OSX, Windows
● H/W: i686*, amd64*, ARM (32/64), MIPS, PPC

 * Full Q/A

 11

cat /etc/motd

● Pros:
● Strongly typed, high-performance language
● Comprehensive ecosystem
● Ideal for secure system programming

● Cons:
● Steep learning curve (esp. type system)
● Not a real OOPL
● Unsuitable for learning programming

=> My $.02, your mileage may vary

 12

shutdown -H +5

● Rapidly gaining community momentum:
● Servo, Quantum
● Tor
● Azure IoT Edge
● Nu shell
● boringtun: user space WireGuard implementation

● Redis modules
● Kernel module framework

 13

shutdown -H +5 (ctd.)

Date Mon, 19 Jan 2004 22:46:23 -0800 (PST)

From Linus Torvalds <>

Subject Re: Compiling C++ kernel module + Makefile

On Tue, 20 Jan 2004, Robin Rosenberg wrote:

[...]

In fact, in Linux we did try C++ once already, back in 1992.

It sucks. Trust me - writing kernel code in C++ is a BLOODY STUPID IDEA.

The fact is, C++ compilers are not trustworthy. They were even worse in

1992, but some fundamental facts haven't changed:

 - the whole C++ exception handling thing is fundamentally broken. It's

 especially broken for kernels.

 - any compiler or language that likes to hide things like memory

 allocations behind your back just isn't a good choice for a kernel.

 - you can write object-oriented code (useful for filesystems etc) in C,

 without the crap that is C++. [...]

 14

shutdown -H +5 (ctd.)

● Tool chain support for automatic C
bindings generation (via libffi)

● Crate implementation for kernel i/f
● Only amd64 support at the moment

(other architectures are WiP)
● Rust nightly + clang
● github.com/fishinabarrel/linux-kernel-
module-rust

 15

apropos rust

● rust-lang.org: official language website including documentation

● crates.io: crate registry

● github.com/rust-lang/rust: source code Github repo

● this-week-in-rust.org: weekly news & updates

● newrustacean.com: weekly podcast (+1)

● rusty-spike.blubrry.net: weekly podcast (dead?)

● request-for-explanation.github.io/podcast: weekly discussion of Rust

RFCs

● gist.github.com/mjohnsullivan/e5182707caf0a9dbdf2d: web server

foundation

 16

irssi

Questions?

 17

Thank you!

© 2019 CC-BY

Dr. Christoph Zimmermann

monochromec at <ignore>space</ignore>gmail<dot></dot>com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

